Nikita Zimov’s nickname for the vehicle seemed odd at first. It didn’t look like a baby mammoth. It looked like a small tank, with armored wheels and a pit bull’s center of gravity. Only after he smashed us into the first tree did the connection become clear.
We were driving through a remote forest in Eastern Siberia, just north of the Arctic Circle, when it happened. The summer thaw was in full swing. The undergrowth glowed green, and the air hung heavy with mosquitoes. We had just splashed through a series of deep ponds when, without a word of warning, Nikita veered off the trail and into the trees, ramming us into the trunk of a young 20-foot larch. The wheels spun for a moment, and then surged us forward. A dry crack rang out from under the fender as the larch snapped cleanly at its base and toppled over, falling in the quiet, dignified way that trees do.
Listen to the audio version of this article:Download the Audm app for your iPhone to listen to more titles.
I had never seen Nikita happier. Even seated behind the wheel, he loomed tall and broad-shouldered, his brown hair cut short like a soldier’s. He fixed his large ice-blue eyes on the fallen tree and grinned. I remember thinking that in another age, Nikita might have led a hunter-gatherer band in some wildland of the far north. He squeezed the accelerator, slamming us into another larch, until it too snapped and toppled over, felled by our elephantine force. We rampaged 20 yards with this same violent rhythm—churning wheels, cracking timber, silent fall—before stopping to survey the flattened strip of larches in our wake.
“In general, I like trees,” Nikita said. “But here, they are against our theory.”
Behind us, through the fresh gap in the forest, our destination shone in the July sun. Beyond the broken trunks and a few dark tree-lined hills stood Pleistocene Park, a 50-square-mile nature reserve of grassy plains roamed by bison, musk oxen, wild horses, and maybe, in the not-too-distant future, lab-grown woolly mammoths. Though its name winks at Jurassic Park, Nikita, the reserve’s director, was keen to explain that it is not a tourist attraction, or even a species-resurrection project. It is, instead, a radical geoengineering scheme.
“It will be cute to have mammoths running around here,” he told me. “But I’m not doing this for them, or for any other animals. I’m not one of these crazy scientists that just wants to make the world green. I am trying to solve the larger problem of climate change. I’m doing this for humans. I’ve got three daughters. I’m doing it for them.”
Pleistocene Park is named for the geological epoch that ended only 12,000 years ago, having begun 2.6 million years earlier. Though colloquially known as the Ice Age, the Pleistocene could easily be called the Grass Age. Even during its deepest chills, when thick, blue-veined glaciers were bearing down on the Mediterranean, huge swaths of the planet were coated in grasslands. In Beringia, the Arctic belt that stretches across Siberia, all of Alaska, and much of Canada’s Yukon, these vast plains of green and gold gave rise to a new biome, a cold-weather version of the African savanna called the Mammoth Steppe. But when the Ice Age ended, many of the grasslands vanished under mysterious circumstances, along with most of the giant species with whom we once shared this Earth.
Nikita is trying to resurface Beringia with grasslands. He wants to summon the Mammoth Steppe ecosystem, complete with its extinct creatures, back from the underworld of geological layers. The park was founded in 1996, and already it has broken out of its original fences, eating its way into the surrounding tundra scrublands and small forests. If Nikita has his way, Pleistocene Park will spread across Arctic Siberia and into North America, helping to slow the thawing of the Arctic permafrost. Were that frozen underground layer to warm too quickly, it would release some of the world’s most dangerous climate-change accelerants into the atmosphere, visiting catastrophe on human beings and millions of other species.
In its scope and radicalism, the idea has few peers, save perhaps the scheme to cool the Earth by seeding the atmosphere with silvery mists of sun-reflecting aerosols. Only in Siberia’s empty expanse could an experiment of this scale succeed, and only if human beings learn to cooperate across centuries. This intergenerational work has already begun. It was Nikita’s father, Sergey, who first developed the idea for Pleistocene Park, before ceding control of it to Nikita. Sergey Zimov says the park would be “the largest project in human history.”
The Zimovs have a complicated relationship. The father says he had to woo the son back to the Arctic. When Nikita was young, Sergey was, by his own admission, obsessed with work. “I don’t think he even paid attention to me until I was 20,” Nikita told me. Nikita went away for high school, to a prestigious science academy in Novosibirsk, Siberia’s largest city. He found life there to his liking, and decided to stay for university. Sergey made the journey to Novosibirsk during Nikita’s freshman year and asked him to come home. It would have been easy for Nikita to say no. He soon started dating the woman he would go on to marry. Saying yes to Sergey meant asking her to live, and raise children, in the ice fields at the top of the world. And then there was his pride. “It is difficult to dedicate your life to someone else’s idea,” he told me.
But Sergey was persuasive. Like many Russians, he has a poetic way of speaking. In the Arctic research community, he is famous for his ability to think across several scientific disciplines. He will spend years nurturing a big idea before previewing it for the field’s luminaries. It will sound crazy at first, several of them told me. “But then you go away and you think,” said Max Holmes, the deputy director of Woods Hole Research Center, in Massachusetts. “And the idea starts to makes sense, and then you can’t come up with a good reason why it’s wrong.”
Of all the big ideas that have come spilling out of Sergey Zimov, none rouses his passions like Pleistocene Park. He once told me it would be “the largest project in human history.”
As it happens, human history began in the Pleistocene. Many behaviors that distinguish us from other species emerged during that 2.6-million-year epoch, when glaciers pulsed down from the North Pole at regular intervals. In the flood myths of Noah and Gilgamesh, and in Plato’s story of Atlantis, we get a clue as to what it was like when the last glaciation ended and the ice melted and the seas welled up, swallowing coasts and islands. But human culture has preserved no memory of an oncoming glaciation. We can only imagine what it was like to watch millennia of snow pile up into ice slabs that pushed ever southward. In the epic poems that compress generations of experience, a glaciation would have seemed like a tsunami of ice rolling down from the great white north.
One of these 10,000-year winters may have inspired our domestication of fire, that still unequaled technological leap that warmed us, warded away predators, and cooked the calorie-dense meals that nourished our growing brains. On our watch, fire evolved quickly, from a bonfire at the center of camp to industrial combustion that powers cities whose glow can be seen from space. But these fossil-fueled fires give off an exhaust, one that is pooling, invisibly, in the thin shell of air around our planet, warming its surface. And nowhere is warming faster, or with greater consequence, than the Arctic.
Every Arctic winter is an Ice Age in miniature. In late September, the sky darkens and the ice sheet atop the North Pole expands, spreading a surface freeze across the seas of the Arctic Ocean, like a cataract dilating over a blue iris. In October, the freeze hits Siberia’s north coast and continues into the land, sandwiching the soil between surface snowpack and subterranean frost. When the spring sun comes, it melts the snow, but the frozen underground layer remains. Nearly a mile thick in some places, this Siberian permafrost extends through the northern tundra moonscape and well into the taiga forest that stretches, like an evergreen stripe, across Eurasia’s midsection. Similar frozen layers lie beneath the surface in Alaska and the Yukon, and all are now beginning to thaw. Kevin Tong
If this intercontinental ice block warms too quickly, its thawing will send as much greenhouse gas into the atmosphere each year as do all of America’s SUVs, airliners, container ships, factories, and coal-burning plants combined. It could throw the planet’s climate into a calamitous feedback loop, in which faster heating begets faster melting. The more apocalyptic climate-change scenarios will be in play. Coastal population centers could be swamped. Oceans could become... Одна из этих 10 000-летних зим, возможно, вдохновила нас на одомашнивание огня, который все еще не имел себе равных в технологическом скачке, который согревал нас, защищал от хищников и готовил пищу с высокой калорийностью, которая питала наш растущий мозг. На наших часах огонь быстро развился - от костра в центре лагеря до промышленного сжигания, которое питает города, свет которых можно увидеть из космоса. Но эти ископаемые пожары испускают выхлоп, который незаметно впадает в тонкую оболочку воздуха вокруг нашей планеты, нагревая ее поверхность. И нигде не прогревается быстрее или с более серьезными последствиями, чем Арктика.
Каждая арктическая зима - это ледниковый период в миниатюре. В конце сентября небо темнеет, и ледяной покров на вершине Северного полюса расширяется, распространяя поверхностный мороз по морям Северного Ледовитого океана, словно катаракта, распространяющаяся над синим ирисом. В октябре замерзание достигает северного побережья Сибири и продолжается на суше, прокладывая почву между поверхностным снежным покровом и подземными морозами. Когда наступает весеннее солнце, снег тает, но замерзший подземный слой остается. В некоторых местах эта сибирская вечная мерзлота толщиной почти в милю простирается через лунный ландшафт северной тундры и хорошо проникает в таежный лес, который, как вечнозеленая полоса, тянется через середину Евразии. Подобные замерзшие слои лежат под поверхностью на Аляске и Юконе, и теперь все начинают оттаивать. Кевин Тонг
Если этот межконтинентальный ледяной блок прогревается слишком быстро, его таяние будет ежегодно выбрасывать в атмосферу столько парникового газа, сколько делают все американские внедорожники, авиалайнеры, контейнеровозы, заводы и заводы, работающие на угле, вместе взятые. Это может бросить климат планеты в бедственную петлю обратной связи, в которой более быстрое нагревание порождает более быстрое таяние. Более апокалиптические сценарии изменения климата будут в игре. Прибрежные населенные пункты могут быть заболочены. Океаны могут стать ... | |